고성능 반도체 패키지, 테스트 소켓, 프로브 카드 설계자를 위한 신호무결성 분석 솔루션

Next Gen High Performance Integrity:Advanced Silicon/Package/PCB Interconnection design 세미나

태성에스엔이 박유순 | 매니저

반도체 공정별 솔루션

• 반도체 공정

https://namu.wiki/w/%EC%9B%A8%EC%9D%B4%ED%8D%BC

https://ipvideo.kr/bbs/board.php?bo_table=portfolio&wr_id=2300

https://www.e4ds.com/sub_view.asp?ch=2&t=0&idx=12038

https://www.smithsinterconnect.com/products/semiconductor-test/test-sockets/array-high-speed-test-davinci-micro-test-socket/

반도체 공정별 솔루션

• Probe Card Solution

Probe Card Solution

• Probe Card

SNE

- 분기 구조로 인한 신호 손실 증가
- 분기 구조로 인한 고속신호 전송의 어려움
- 신호의 Loss가 최소화 되는 최적의 솔루션 분석 필요

Probe Card

이미지 출처 : https://blog.naver.com/jysbw21/22255536847 https://www.yna.co.kr/view/PYH2022020911300001

Probe Card Solution

Probe Card Solution

- PCB 해석 정보
 - HFSS 3DLayout을 이용하여 PCB 디자인 파라미터에 변수 정의
 - PCB 설계 파라미터를 조합하여 주파수 도메인에서 최상의 조건을 찾는게 목적
 - 설계 파라미터는 Main PCB와 MLC 선폭, Via 직경, Via Pad 크기로 정의

6

디자인 변수 설정 예시

- 변수 설정
 - 선로의 길이, 폭, 재질, Layer Stackup 등 수치가 입력되는 모든 항목에 변수 설정 가능

SNE

optiSLang을 통한 Metamodel 분석

- Metamodel
 - 각 변수 조합별 해석 결과를 수집한 Sensitivity를 분석
 - Sensitivity를 분석을 기반으로 입력된 변수들 중에서 유효한 설계변수와 변수범위 탐색
 - optiSLang은 Metamodel을 자동으로 생성해주며, 이렇게 생성된 Metamodel을 AMOP(Adaptive Metamodel of Optimal Prognosis)이라 함
 - AMOP는 변수 간의 관계 및 결과에 대한 영향을 보여줌

Sensitivity 분석 결과

Correlation Matrix

optiSLang 화면

optiSLang을 통한 Metamodel 분석

• optiSLang 최적화

- 다양한 변수로 부터 최적화된 결과물 도출
- 이미 기존 설계상 최적화가 되어있는 디자인에서 한번 더 개선
- EyeHeight 377.94mV -> 418.2236mV
- EyeAmplitude 492.31mV ->507.96mV

AEYEPROBE(V1)

800

249.6845

741.9911

EyeLevelZero

EveLevelOne

Original Design

0_all Ansys

반도체 공정별 솔루션

• Packaging Solution

Advanced Packaging Solution

- 2.5D Interposer
 - um단위의 배선폭과 간격
 - 수천개의 대량 Net을 컨트롤 해야하는 문제 (디자인 Import 시 장시간 소요)
 - 일반적으로 같은 패턴의 반복이므로 적절하게 디자인을 Clip하여 해석진행

HFSS 3DLayout

미세 배선의 문제

미세 배선의 문제

• 특성임피던스 비교

- Interposer 선로의 단면(2x3um)을 이용하여 2D Extractor 해석
- Q3D 사용자의 경우 $\sqrt{L/C}$ 로 계산할 경우 오차가 발생

Net Name	2D Extractor Z0 결과	임피던스 계산기 결과
Net1	94.18	59.12
Net2	95.84	63.83
Net3	95.88	63.86
Net4	136.13	91.83
Net5	94.30	59.11
Net6	136.01	91.80
Net7	94.18	59.11
Net8	136.02	91.86
Net9	94.18	59.12
Net10	135.99	91.83
Net11	94.18	59.12
Net12	136.04	91.87
Net13	94.17	59.11
Net14	136.11	91.91
Net15	94.16	59.08
Net16	136.16	91.85
Net17	94.26	59.08
Net18	137.29	97.95
Net19	137.40	98.05
Net20	135.98	91.83
Net21	136.05	91.88
Net22	94.21	59.12
Net23	136.18	91.91
Net24	94.15	59.09

해석 시간 단축을 위한 솔루션

- Mesh Setting
 - Pre-Mesh, Mesh Method, Maximum Refinement Per Pass, Solve Inside 조건 변경에 따른 해석 결과 비교

	Design Settings : 1	X Setup1
E Select Geometry		
	DC Extrapolation Nexxim Options Export S Parameters Desig	gn Mode General Options Advanced Advanced Meshing Solver DC R Defaults
Name: Length 1 🔽 Enable	Lossy Dielectrics HFSS Meshing Method HFSS Adaptive	Mesh
Nets and layers < D	Initial Mesh Method C Auto Automatically determine the optimal mesher based on model assembly and attribut C Phi Fast meshing for planar structures Maximum delta-Z Ratio 1e+05 C Phi Plus Parallel meshing for models with bondwires and/or mechanical CAD geometry C Classic mesh General purpose meshing for all geometries Vuse alternative mesh methods as fallback C Enable Design-level intersection checks Save as default	Image: The second s
	\$L01	치스 Use Defaults

해석 시간 단축을 위한 솔루션

- HFSS 3DLayout
 - Solve Inside 적용 유무에 따른 결과 차이 발생

۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵ ۵

해석 시간 단축을 위한 솔루션

• 분석 시간 비교

No.	Mesh Type	Maximum Refinement	Pre-Mesh	Sove Inside	Initial Meshing	Adaptive Meshing	Frequency Sweep	Elapsed Time	Number of Paaes	Mesh
1	Phi	30	-	Off	0:00:38	0:08:55	1:17:31	1:27:09	12	839,035
2	Classic	30	-	Off	0:15:04	0:08:01	1:09:04	1:32:16	9	936,486
3	Phi	30	-	On	0:00:38	0:09:12	1:55:38	2:05:34	9	894,435
4	Phi	30	5um	Off	0:01:53	0:11:23	1:28:19	1:41:43	8	1,460,092
5	Classic	30	5um	Off	0:15:31	0:11:06	1:28:50	1:55:32	7	1,515,513
6	Classic	20	5um	On	0:16:18	0:08:50	1:36:17	2:01:31	5	1,385,098
7	Phi	20	5um	On	0:01:54	0:10:31	1:47:57	2:00:29	6	1,389,087
8	Phi	30	10um	Off	0:01:12	0:07:33	0:54:33	1:03:24	8	937,834
9	Classic	30	10um	Off	0:15:53	0:04:12	0:26:34	0:46:44	6	659,860
10	Classic	20	10um	On	0:15:00	0:04:58	0:51:05	1:11:08	5	791,639
11	Phi	20	10um	On	0:01:11	0:12:03	1:50:21	2:03:42	9	1,169,070
12	Classic	20	15um	On	0:15:36	0:04:12	0:43:08	1:03:01	5	674,313
13	Classic	20	20um	On	0:14:59	0:05:10	0:50:10	1:10:24	6	700,028

2.5D Interposer 열해석

• AEDT에 통합된 Mechanical design을 통한 열해석

- AEDT에 통합된 Mechincal로 간편하게 열해석(전도) 가능
- Q3D Extractor 해석 후 Mechnical Design 자동 생성
- Q3D Extractor 해석
 - Q3D Extractor에서 추출된 DC 해석 결과를 바탕으로 열해석
 - Q3D Extractor & Mechanical
 - Q3D Setup : DC Check
- 열해석을 위한 물성 입력
 - 필수 입력 항목 : Thermal Conductivity, Mass Density, Specific Heat

Solve Setup		×
General DC RL Expr	ession Cache Defaults	
Name:	Setup1	✓ Enabled
Solution Frequency:	1	GHz
Solution Selection		
Capacitance/0	Conductance	
DC	C Resistance/Inductance	
	Resistance Only	
C Resistance	/Inductance	
✓ Save fields	Q3D Extr	actor Setup
Enhanced Acc	curacy in DC-to-AC Transition R	egion
Relative Error in F	VL: 0.1	
	Use Defaults	
	HPC a	and Analysis Options
		확인 취소

2.5D Interposer 열해석

- Q3D Extractor 설정
 - 열해석을 위한 물성 입력
 - 필수 입력 항목 : Thermal Conductivity, Mass Density, Specific Heat

Select Definition					×	🔛 Vie	ew / Edit Material				X
Materials Material Filters Search Parameters Search by Name Search Search Relative Search Search	am - e P rmittivity	C by Property ↓ [sys] Materials	how Project definitions	Select all libraries		Materia Coppe	al <u>Name</u> er beryllium alloy, C17200 erties of the Material Name	Туре	Value	Units	View/Edit Ma erial for C Active Design
Name	Location	Origin	Relative Permittivity	Relative Permeability			Thermal Conductivity Mass Density	Simple Simple	101.47 8248.51	W/m-C kg/m^3	C Active roject
Copper beryllium alloy, C17200 coming_glass cyanate_ester diamond_hi_pres diamond_pl_cvd Dupont Type 100 HN Film (tm) Duroid (tm) epoxy_Kevlar_xy ferrite FR4_epoxy gallium_arsenide GE GETEK ML200/RG200 (tm) GIL GML1032 (tm)	Project SysLibrary SysLibrary SysLibrary SysLibrary SysLibrary SysLibrary SysLibrary SysLibrary SysLibrary SysLibrary SysLibrary SysLibrary SysLibrary SysLibrary	Granta Materials Data for Simulatio Materials Materials Materials Materials Materials Materials Materials Materials Materials Materials Materials Materials Materials Materials Materials Materials Materials Materials	n 1 5,75 3,8 16,5 5,7 3,5 3,5 2,2 3,6 12 4,4 12,9 3,9 3,12 3,2	1 1 1 1 1 1 1 1 1000 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Thermal Expansion Coerricient Thermal Material Type Solar Behavior	Simple	Solid Copaque		View/Edit Mc lifier for Thermal Structural View/Edit Mc lifier for Thermal Modifier
GIL GML2032 (tm) GIL MC5 (tm) glass glass_PTFEreinf <u>View/Edit Materials</u>	SysLibrary SysLibrary SysLibrary SysLibrary	Materials Materials Materials <u>C</u> lone Material(s)	3.2 3.2 5.5 2.5 	1 1 1 1 Export to Librar 확인 목	·	, <u>S</u> e	Notes Copper-beryllium alloy, CuBe2, t Frequency Dependency Calcula <u>R</u> eset OK	C17200, TH04 GUID: ate Properties for: <u>C</u> ancel	e197b33b-ff76-4966-972	e-17541d9adce0 Dai	Material Appearance

AEDT Mechanical (Q3D & Mechanical)

• Analyze

SNE

- Analysis > Setup1 우클릭 > Analyze
- 온도 분포 확인
 - Model Tree > Planes > 원하는 좌표면 선택 > 모델러에서 마우스 우클릭 > Plot Fields > Temperature 선택

		Marker	
		Named Expression	
		Linked Heat Transfer Coefficent	
		Volume Loss Density	
Copy Image		Surface Loss Density	
Plot Mesh		Heat Flux	
Plot Fields	>	Temperature	
Assign Mesh Operation	> :		
Assign Excitation	>		
Assign Boundary	>		
Assign Contact	>		
📨 Assign Material			
Replace with 3D Component			
Create 3D Component			
Group	>		
Edit	>		
View	>		
Measure	>		
Go to History			
Extend Selection	>		
Select Objects	>		
Selection Mode	>		
Next Behind	В		

19

AEDT Mechanical (Q3D & Mechanical)

• 연성해석

SNF

- *Q3D Extractor 해석 완료 후* 전류 인가 설정
 - Project Manager > Field Overlays 우클릭 > Edit Sources
- Mechanical Design 자동 생성 :

 \times

Create Target Design

General

Q3D Extractor - Mechanical 연성해석

- Q3D Extractor Mechanical 연성해석 결과
 - HBM3 타켓 8mA 14mA까지 전류인가에 따른 온도 분포 결과 비교
 - 구조 해석 지식이 없어도 매우 간편하게 열해석 가능
 ※ 전도만 해석 가능 (대류 X)

반도체 공정별 솔루션

• Packaging Solution

테스트 소켓이란?

・테스트 소켓

- 반도체 제조공정 중 마지막 검사를 위한 부품으로써 반도체 패키지와 테스트 보드를 상호 연결 시켜주 는 컨텍터
- 핀 블록 내부에 프로브 핀이 패키지의 Ball Map에 맞춰 삽입 배열 되는 구조
- 주문 제작 형태로 이루어지며 최근에는 고속 신호 대응을 위한 다양한 형태의 테스트 소켓 개발

테스트 소켓 구조

테스트 소켓 배열 예시

Test Socket Simulation 자동화

• Test Socket

SNE

- 유사 구조에서 치수와 배열이 변경되어 반복 작업을 해야하는 제품
- 구조는 동일하고 치수가 매번 다르게 적용되는 제품
- 시장 특성상 결과 데이터를 하루 안에 보내야 하는 경우가 많음
- 전문 시뮬레이션 엔지니어 보다 기구 설계자가 시뮬레이션을 운영하는 경우가 많음

시뮬레이션 자동화를 위한 변수 설정

Name	Value	Unit	Evaluated V	Туре
External_Dia	0,17	mm	0,17mm	Design
Barrel_Thick	0,035	mm	0,035mm	Design
Barrel_Length	2,6	mm	2,6mm	Design
Pin_length	4	mm	4mm	Design
Banding_Length	0,055	mm	0,055mm	Design
Top_Plunger_Head_Dia	0,09	mm	0,09mm	Design
Top_Plunger_Head_Length	1	mm	1mm	Design
Top_Plunger_Stroke	0,4	mm	0,4mm	Design
Top_Plunger_Body_Dia	0,12	mm	0, 12mm	Design
Top_Plunger_Body_Length	0,8	mm	0,8mm	Design
Contact_Length	0,06	mm	0,06mm	Design
Bottom_Plunger_Head_Dia	0,08	mm	0,08mm	Design
Bottom_Plunger_Head_Length	0,6	mm	0,6mm	Design
Bottom_Plunger_Body_Dia	0, 11	mm	0,11mm	Design
Bottom_Plunger_Body_Length	0,5	mm	0,5mm	Design
Banding_Angle	40	deg	40deg	Design
Cutter_Length	1	mm	1mm	Design
Contact_Angle	35	deg	35deg	Design
Bottom_Plunger_Stroke	0,2	mm	0,2mm	Design
Top_Plunger_Cutter_Angle	35	deg	35deg	Design
Bottom_Plunger_Cutter_Angle	35	deg	35deg	Design
Top_Plunger_Upper_Cutter_L,	1	mm	1mm	Design
Top_Plunger_Upper_Cutter_A,	45	deg	45deg	Design
Bottom_Plunger_Upper_Cutte	45	deg	45deg	Design

Test Socket Simulation 자동화

- 시뮬레이션 자동화
 - 1시간 이내 3D 모델링 부터 시뮬레이션, 레포트 작성까지 자동으로 도출 (PC 성능에 따라 해석 시간차이 발생)
 - 시뮬레이션 지식이 없어도 영업사원이 직접 해석 후 레포트 제작 가능

e Directory C:\Users\yspark.TSNE	\Documents\Work\TestSocket	Save Dir		
e Project Name Test_Socket	(*Save Directory + S	ave Project Name.AEDT)		
SYS EM Version ANSYS EM 24 R2 V	•			Modeling Run
odel Setup				🔳 HFSS 🔳 Q3D
Pin Type) Double Probe Load Data	Reset Data		
Top Plunger	© TP Head Ø	0.3 mm	•	
Bottom Plunger	@ TP Head Length	1 mm	ength	① TP Head Ø
	③ TP Body Length	1 mm	Head Neck I	
Barrel	@ TP Neck Length	0.1 mm	0 TP	
Test Socket	() TP Body Cutter A	ngle∠° 45 °		
Simulation Setup	Top Plunger 재질 설	1정 BeCu •	®TP Body Length	Barrel 내경과 풍일 (지종입역) ③ TP Body Cutter Angle*
eport Setup			•	× '
Machanical Spec	20	Pin Material	ewn	Au Distant
Spring Force	20 gf	Spring Teo Diverse	BeCu	V Au Plated
Recommended Stroke	0.5 mm	lop Plunger Bottm Plunger	BeCu	V Au Plated
, on stroke	55, 125		PBT	V Au Plated

결과 레포트 예시

감사합니다.

yspark@tsne.co.kr

※ 본 자료의 모든 콘텐츠의 저작권은 소프트웨어 개발사와 ㈜태성에스엔이에 있으므로 무단 전재 및 변형, 배포할 수 없습니다.

